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2015 UNSW School Mathematics Competition

Junior Division – Problems and Solutions

Solutions by Denis Potapov1

Problem 1
Every point on a line is painted using two different colours: black and white.
Prove that there are always points A1, A2 and A3 of the same colour such that

A1A2 = A2A3 .

Solution. Choose any two points of the same colour, say black, X and Y . Let now A
be the centre of XY ; B be such that X is the centre of BY and C be such that Y is the
centre of CX . Hence, we have the following possibilities:

1. If A is black, then A, X and Y make the desired triple of points.

2. Otherwise, if B is black, then B, X and Y make the desired triple.

3. Otherwise, if C is black, then C, X and Y make the desired triple.

4. Otherwise, A, B and C make the desired triple.

Problem 2
Each of the 64 squares of a chess board has its centre marked. Is it possible to split
the board in parts by 13 straight lines such that every part has only one of the points
marked?
Note: If a marked centre ends up on a splitting line, then it is assumed that it belongs
to both parts of the board on each side of the splitting line.

Solution. Consider 28 squares on all four sides of the board and join adjacent centres
of those squared by line segments. There are 28 segments all together. Eeach of the 13
splitting lines intersects at most two such line segments, so there will be at least one
segment which is not crossed by a line. Hence, the end points of such segments are in
the same part of the board.

1Dr. Denis Potapov is a Senior Lecturer in the School of Mathematics and Statistics at UNSW Aus-
tralia.
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Problem 3
Solve the equation

√

4x+ 5−
√

3x+ 16 =
√

7x− 13−
√

6x− 2 .

Solution. Write the equation in the form
√

4x+ 5 +
√

6x− 2 =
√

7x− 13 +
√

3x+ 16 .

In such form, since

(4x+ 5) + (6x− 2) = (7x− 13) + (3x+ 16),

after squaring of both sides, we arrive at
√

4x+ 5×
√

6x− 2 =
√

7x− 13×
√

3x+ 16 .

Squaring again gives

(4x+ 5)× (6x− 2) = (7x− 13)× (3x+ 16) ⇔ x2 − 17 x+ 66 .

The latter solves to
x = 6 and x = 11 .

Problem 4
A triangle △ABC has squares ABMP and BCDK built on its outer sides. Prove that
the median BE of the triangle △ABC is also an altitude of the triangle △BMK.

Solution. Rotate the triangle △ABC by 90o around vertex B as shown on the picture
below. After such transformation, the median BE becomes the mid-segment of the
triangle △KMC ′. That is, on one hand, BE ′ is parallel to KM , and on the other hand,
it is perpendicular to the median BE.
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Problem 5
Find a five-digit number which equals 45 times the product of its digits.

Solution. Let
N = abcde

be the number. We are given that

abcde = 45 a b c d e .

Note first that every digit a, b, c, d and e is odd. Indeed, otherwise, N is a multiple of 10
and hence e = 0 and N = 0.

So, every digit a, b, c, d and e is odd. Since N is a multiple of 5, it follows that e = 5.
Furthermore, since N is a multiple of 25, then d = 7 (the case d = 2 is not allowed, since
every digit is odd). On the other hand, since N is a multiple of 9, the value

a + b+ c + 12

is also a multiple of 9. Hence, the options are

a+ b+ c+ 12 = 18 ⇔ a+ b+ c = 6

a+ b+ c+ 12 = 27 ⇔ a+ b+ c = 15

a+ b+ c+ 12 = 36 ⇔ a+ b+ c = 24

However a + b+ c is odd, hence

a+ b+ c = 15 .

Finally,
45× 35× abc ≤ 100 000

so
abc ≤ 63 .

Thus, the choices for a, b and c are narrowed down to:

a, b, c in some order ⇒ abc 45× 35× abc
9, 5, 1 ⇒ 45 70 875
9, 3, 3 ⇒ 81 abc > 63
7, 7, 1 ⇒ 49 77 175
7, 5, 3 ⇒ 105 abc > 63

So a solution is
N = 77 175 .
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Problem 6
For two rectangles A and B on a plane, we write A ⊆ B, if the rectangle A can be
placed inside the rectangle B. For instance, if A is a rectangle with sides 2 × 1, B is a
rectangle with sides 2×2, and C is a rectangle with sides 1×3, then we can write A ⊆ B
and A ⊆ C. However, we can write neither B ⊆ C nor C ⊆ B.
(a) Prove that among 101 rectangles on a plane with integer sides not exceeding 100,
there are three rectangles A, B and C such that

A ⊆ B ⊆ C .

(b) Prove that among 2015 rectangles with integer sides not exceeding 100, there are 41
rectangles A1, A2, . . . , A41 such that

A1 ⊆ A2 ⊆ . . . ⊆ A41 .

Solution. For every rectangle with sides a and b (a ≤ b) place a point with coordi-
nates (b, a) on the plane. All possible rectangles with integer sides not exceeding 100
are shown on the following picture. We group these rectangles into 50 disjoint chains
as shown on the picture.

1 2
. . .

100

100

1

2

.

.

.

Within each chain, the rectangles are completely ordered by the relation A ⊆ B.
Hence, since

2× 50 < 100 ,

for any 101 rectangles, there are three which end up on the same chain, and therefore,
these three form a completely ordered subset.

Similarly, in case of 2015 rectangles, since

40× 50 < 2015

among 2015 rectangles, there are 41 placed on the same chain and therefore completely
ordered.
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2015 UNSW School Mathematics Competition

Senior Division - Problems and Solutions

Solutions by Denis Potapov2

Problem 1
A spherical planet has 37 satellites. Prove that there is always a point on the surface of
the planet such that at most 17 satellites are seen from this point.

Solution. Fix any two satellites, say S1 and S2, and construct the plane through these
satellites and the centre of the planet. Let A and B be the end points of the diameter of
the planet perpendicular to this plane. The group of satellites visible from A does not
intersect with the group of satellites visible from B. Moreover, the satellites S1 and S2

are also not visible from both point A and point B. Thus, at most

17 = [(37− 2)/2]

are visible from either point A or point B.

Problem 2
The sequence of numbers {ak}∞k=1

is such that

a1 = 1

and ak+1 ≥ ak +
1

ak
, k = 2, 3, . . .

Prove that a100 > 14.

Solution. Since ak+1 − ak ≥
1

ak
, it follows that

a2
k+1 − a2

k
= (ak+1 − ak)× (ak+1 + ak) ≥

1

ak
(ak+1 + ak) =

ak+1

ak
+ 1 .

Since the sequence {ak}∞k=1
consists of positive numbers, we see that

ak+1 ≥ ak +
1

ak
> ak ,

so
ak+1

ak
> 1. Thus,

a2
k+1 − a2

k
≥ ak+1

ak
+ 1 > 2

and
a2100 − a21 = (a2100 − a299) + (a299 − a298) + · · ·+ (a22 − a21) > 99× 2 = 198

2Dr. Denis Potapov is a Senior Lecturer in the School of Mathematics and Statistics at UNSW Aus-
tralia.
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so
a100 >

√
196 > 14 .

Problem 3
You are given a square table filled with positive integers. On every move, you are
allowed to take 1 from every element of a row; or to multiply every element of a column
by 2. Prove that there is a strategy which can reduce every element in the table to zero.

Solution. We call a row a “zero row” if it consists of all zero entries; we call a row
a “non-zero row” if it consists of all non-zero entries; we call a row a “partially zero
row” if it has some (but not all) zero entries.

(a) Assume that the table has some zero rows. In this case, applying the allowed
operations on another row (a non-zero row or a partially zero row) does not affect the
existing zero rows.

(b) Originally, every row is non-zero. Let us show that every non-zero row can
be converted to a zero row such that a partially non-zero row never appears. This,
together with part (a) finishes the solution to this question.

Indeed, fix a non-zero row, say R. Firstly, every column which has entry exactly 1
in the row R is multiplied by 2. Secondly, every entry of the row R is reduced by 1.
As a result, every entry of the row R which had value 1, kept the value 1. Every other
entry of the row R is reduced by 1.

By sufficiently repeating the above strategy, every entry of the row R can be reduced
to value 1 without making the row R a partially zero row during this reduction.

Finally, when the row R consists of all 1’s, we reduce to zero each entry of the row R
by one move of the first type.

Problem 4
Find a five-digit number which equals 45 times the product of its digits.

Solution. Let
N = abcde

be the number. We are given that

abcde = 45 a b c d e .

Note first that every digit a, b, c, d and e is odd. Indeed, otherwise, N is a multiple of 10
and hence e = 0 and N = 0.

So every digit a, b, c, d and e is odd. Since N is a multiple of 5, then e = 5. Further-
more, since N is a multiple of 25, then d = 7 (the case d = 2 is not allowed, since every
digit is odd). On the other hand, since N is a multiple of 9, the value

a + b+ c + 12

is also a multiple of 9. Hence, the options are

a+ b+ c+ 12 = 18 ⇔ a+ b+ c = 6
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a+ b+ c+ 12 = 27 ⇔ a+ b+ c = 15

a+ b+ c+ 12 = 36 ⇔ a+ b+ c = 24

However a + b+ c is odd, hence

a+ b+ c = 15 .

Finally,
45× 35× abc ≤ 100 000

so
abc ≤ 63 .

Thus, the choices for a, b and c are narrowed down to:

a, b, c in some order ⇒ abc 45× 35× abc
9, 5, 1 ⇒ 45 70 875
9, 3, 3 ⇒ 81 abc > 63
7, 7, 1 ⇒ 49 77 175
7, 5, 3 ⇒ 105 abc > 63

So a solution is
N = 77 175 .

Problem 5
The radius of the circumscribed circle of a triangle is 65

6
. Find the third side of the

triangle if the other two are 20 and 13 and every angle is acute.

Solution. Let

AC = 20 and BC = 13 and OC =
65

6
.

A

B

C

O

ED
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Let CD be the height of △ABC and let CE be the diameter of the circle. Connect
points A and E. The triangle △CAE is right-angled since the angle ∠CAE is rested on
a diameter. Hence, the triangles

△ACE and △CDB

are similar. The similarity implies that

CD

CB
=

AC

CE
.

Solving for CD gives

CD =
CB ×AC

CE
=

13× 20

2× 65

6

= 12 .

By Pythagoras’ Theorem applied to △CDB,

DB =
√

132 − 122 = 5

and, by By Pythagoras’ Theorem on △ADC,

AD =
√

202 − 122 = 16 .

Thus,
AB = 16 + 5 = 21 .

Problem 6
Let F (x) be a polynomial with integer coefficients and let

a1, a2, . . . , am

be integers such that for any n ∈ N, there is an ai such that F (n) is a multiple of ai.
Prove that there is one ai such that F (n) is a multiple of ai for any n ∈ N.
Note: The following theorem is known as The Chinese Remainder Theorem and it can
be used in the solution of this problem without proof.

Theorem
Let

q1, q2, . . . , qr ∈ Z

be positive pairwise coprime integers. For any integers

x1, x2, . . . , xr ∈ Z

there is an integer x ∈ Z such that

x ≡ xi (mod qi) , i = 1, 2, . . . , r .
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Solution. Let us assume the contrary: there is an integer xi ∈ Z such that

F (xi) 6≡ 0 (mod ai) ∀i = 1, 2, . . .m .

Factorising ai into prime factors, select the factor

qi := psi
i
, pi prime

such that
F (xi) 6≡ 0 (mod qi) , i = 1, 2, . . . , m .

In the case of identical primes appearing among the powers qi’s, select the factor with
the highest exponent si. Hence, we constructed pairwise coprime integers

q1, q2, . . . , qr, r ≤ m

such that, for any b ∈ Z,

b 6≡ 0 (mod qi) ∀i = 1, 2, . . . , r =⇒ b 6≡ 0 (mod ai) ∀i = 1, 2, . . . , m .

Finally, note that, since F is a polynomial with integer coefficients,

F (xi) 6≡ 0 (mod qi) =⇒ F (xi + kqi) 6≡ 0 (mod qi) ∀k ∈ Z .

Consequently, by the Chinese Remainder Theorem, there is x ∈ Z such that

x = xi + kiqi

for some ki ∈ Z and so

F (x) 6≡ 0 (mod qi) ∀i = 1, 2, . . . , r =⇒ F (x) 6≡ 0 (mod ai) ∀i = 1, 2, . . . , m .
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